Thursday 9 November 2017

Filtro De Passagem Média E Baixa


Estou codificando algo no momento em que eu estou levando um monte de valores ao longo do tempo a partir de uma bússola de hardware. Esta bússola é muito precisa e atualiza-se com muita frequência, com o resultado de que, se ela for ligeiramente, eu acabei com o valor estranho que é extremamente incompatível com seus vizinhos. Eu quero suavizar esses valores. Tendo feito alguma leitura ao redor, parece que o que eu quero é um filtro passa-alto, um filtro passa-baixa ou uma média móvel. Mudar a média com a qual posso descer, mantenho um histórico dos últimos 5 valores ou o que quer que seja, e use a média desses valores a jusante no meu código, onde acabei de usar o valor mais recente. Isso deve, acho, suavizar esses jiggles bem, mas isso me parece que provavelmente é bastante ineficiente, e este é provavelmente um desses problemas conhecidos para programadores adequados para os quais há uma solução de matemática Inteligente realmente boa. Eu sou, no entanto, um daqueles horríveis programadores autodidatas sem um pingo de educação formal em qualquer coisa mesmo vagamente relacionada à CompSci ou à Matemática. A leitura em torno de um pouco sugere que este pode ser um filtro de passagem alta ou baixa, mas não consigo encontrar nada que explique em termos compreensíveis para um hack como eu, qual o efeito desses algoritmos em uma série de valores, e muito menos como as matemáticas trabalho. A resposta dada aqui. Por exemplo, tecnicamente responde a minha pergunta, mas apenas em termos compreensíveis para aqueles que provavelmente já sabem como resolver o problema. Seria realmente uma pessoa muito inteligente e inteligente, que poderia explicar o tipo de problema que isso é, e como funcionam as soluções, em termos compreensíveis para um graduado em artes. Perguntou 21 de setembro 10 às 13:01 Se a sua média móvel deve ser longa para alcançar o alisamento necessário e você realmente não precisa de nenhuma forma específica de kernel, então você estará melhor se você usar uma média móvel exponencialmente decadente: onde você Escolha pequena para ser uma constante apropriada (por exemplo, se você escolher um pequeno 1- 1N, terá a mesma quantidade de média como uma janela de tamanho N, mas distribuída de maneira diferente em pontos mais antigos). De qualquer forma, uma vez que o próximo valor da média móvel depende apenas do anterior e de seus dados, você não precisa manter uma fila ou qualquer coisa. E você pode pensar nisso como fazendo algo como, Bem, eu tenho um novo ponto, mas eu realmente não confio nisso, então vou manter 80 da minha estimativa antiga da medida, e só confio neste novo ponto de dados 20. Isso é Muito parecido com dizer: Bem, eu só confio neste novo ponto 20, e eu uso 4 outros pontos que eu confio na mesma quantia, exceto que em vez de tomar explicitamente os outros 4 pontos, você assumirá que a média que você fez na última vez Foi sensato para que você possa usar seu trabalho anterior. Respondeu 21 de setembro 10 às 14:27 Ei, eu sei que isso é 5 anos de atraso, mas obrigado por uma ótima resposta. Estou trabalhando em um jogo onde o som muda com base em sua velocidade, mas, devido ao funcionamento do jogo em um computador lento, a velocidade flutuaria selvagemente, o que era bom para a direção, mas super irritante em termos de som. Esta foi uma solução muito simples e barata para algo que pensei que seria um problema realmente complexo. Ndash Adam Mar 16 15 at 20:20 Se você está tentando remover o valor ímpar ocasional, um filtro passa-baixa é a melhor das três opções que você identificou. Os filtros de passagem baixa permitem mudanças de baixa velocidade, como as causadas pela rotação de uma bússola à mão, enquanto rejeitam mudanças de alta velocidade, como as causadas por solavancos na estrada, por exemplo. Uma média móvel provavelmente não será suficiente, uma vez que os efeitos de uma única descarga em seus dados afetarão vários valores subsequentes, dependendo do tamanho da sua janela média móvel. Se os valores estranhos forem facilmente detectados, você pode até estar melhor com um algoritmo de remoção de falhas que os ignora completamente: Aqui está um gráfico de guick para ilustrar: O primeiro gráfico é o sinal de entrada, com uma falha desagradável. O segundo gráfico mostra o efeito de uma média móvel de 10 amostras. O gráfico final é uma combinação da média de 10 amostras e do algoritmo de detecção de falha simples mostrado acima. Quando a falha é detectada, a média de 10 amostras é usada em vez do valor real. Respondeu 21 de setembro 10 às 13:38 Bem explicado e pontos de bônus para o gráfico) ndash Henry Cooke 22 de setembro 10 às 0:50 Wow. Realmente viu uma resposta tão agradável ndash Muis 4 de junho 13 às 9:14 A média móvel é um filtro passa-baixa. Ndash nomen 21 de outubro às 19:36 Experimente uma medição de fluxo de ar em vez disso. Ndash kert 25 de abril 14 às 22:09 Mover média com a qual posso descer. Mas parece-me que é provavelmente bastante ineficiente. Realmente, nenhum motivo para uma média móvel deve ser ineficiente. Você mantém o número de pontos de dados desejados em algum buffer (como uma fila circular). Em cada novo ponto de dados, você exibe o valor mais antigo e subtrai-lo de uma soma, e empurra o mais novo e adicione-o à soma. Portanto, cada novo ponto de dados realmente só envolve um poppush, uma adição e uma subtração. Sua média móvel é sempre essa soma de mudança dividida pelo número de valores em seu buffer. É um pouco mais complicado se você estiver recebendo dados simultaneamente de vários tópicos, mas como seus dados são provenientes de um dispositivo de hardware que parece muito duvidoso para mim. Ah, e também: os horríveis programadores autodidactivos se unem) A média móvel pareceu ineficiente para mim porque você precisa armazenar um buffer de valores - melhor para fazer algumas Matemáticas inteligentes com seu valor de entrada e valor de trabalho atual Eu acho que isso é como a média móvel exponencial trabalho. Uma otimização que eu vi para este tipo de média móvel envolve o uso de um amplificador de fila de comprimento fixo, um ponteiro para onde você está na fila e simplesmente encaixando o ponteiro ao redor (com ou um if). Voila Não há pushpop caro. Poder para os amadores, irmão ndash Henry Cooke 22 de setembro 10 às 0:54 Henry: Para uma média móvel direta, você precisa do buffer simplesmente para que você saiba o valor que aparece quando o próximo valor é empurrado. Dito isto, o amplo amplificador de espera de comprimento fixo que você está descrevendo é exatamente o que eu quis dizer com uma fila quotcircular. Por isso, eu estava dizendo que não é ineficiente. O que você achou que eu quis dizer E se sua resposta é uma matriz quotan que muda seus valores de volta em cada remoção indexada (como std :: vector em C). Bem, então, eu já estou ferido, não quero mais falar com você) ndash Dan Tao 22 de setembro 10 às 1:58 Henry: Não sei sobre o AS3, mas um programador de Java tem coleções como CircularQueue em sua disposição (I39m não é um Desenvolvedor de Java, então eu tenho certeza de que há exemplos melhores lá fora, isso é exatamente o que eu encontrei a partir de uma busca rápida do Google), que implementa precisamente a funcionalidade em que estamos falando. Estou bastante confiante de que a maioria dos idiomas de nível médio e baixo com bibliotecas padrão tem algo semelhante (por exemplo, no. NET there39s QueueltTgt). Enfim, eu também era filosofia. tudo é perdoado. Ndash Dan Tao 22 de setembro 10 às 12:44 Uma média móvel exponencialmente decadente pode ser calculada manualmente com apenas a tendência se você usar os valores apropriados. Veja quatromilab. chhackdiete4 para obter uma idéia sobre como fazer isso rapidamente com uma caneta e papel, se você estiver procurando uma média móvel suavemente exponencial com 10 suavização. Mas, como você tem um computador, você provavelmente quer fazer mudanças binárias em oposição à mudança decimal). Desta forma, tudo que você precisa é uma variável para seu valor atual e outra para a média. A próxima média pode então ser calculada a partir disso. Respondeu 21 de setembro 10 às 14:39 há uma técnica chamada de portão de alcance que funciona bem com amostras espúrias de baixa ocorrência. Assumindo o uso de uma das técnicas de filtro mencionadas acima (média móvel, exponencial), uma vez que você tenha um histórico suficiente (uma constante de tempo), você pode testar a nova amostra de dados recebidos para razoabilidade antes de ser adicionada à computação. É necessário algum conhecimento da taxa de mudança máxima razoável do sinal. A amostra em bruto é comparada com o valor mais liso mais recente e se o valor absoluto dessa diferença for maior que o intervalo permitido, essa amostra é descartada (ou substituída por alguma heurística, por exemplo, uma previsão baseada no diferencial de inclinação ou na tendência Valor de previsão a partir do suavização exponencial dupla) resposta 30 de abril 16 às 6: 56 Resposta de frequência do filtro médio de corrida A resposta de freqüência de um sistema LTI é o DTFT da resposta de impulso. A resposta de impulso de uma média móvel em L é desde a movimentação O filtro médio é FIR, a resposta de freqüência reduz-se à soma finita. Podemos usar a identidade muito útil para escrever a resposta de freqüência como onde nós deixamos ae menos jomega. N 0 e M L menos 1. Podemos estar interessados ​​na magnitude desta função, a fim de determinar quais freqüências obtêm o filtro desatualizado e atenuados. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianes por amostra. Observe que em todos os três casos, a resposta de freqüência possui uma característica de passagem baixa. Um componente constante (zero freqüência) na entrada passa pelo filtro não atenuado. Certas freqüências mais altas, como pi 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro de passagem baixa, então não fizemos muito bem. Algumas das freqüências mais altas são atenuadas apenas por um fator de cerca de 110 (para a média móvel de 16 pontos) ou 13 (para a média móvel de quatro pontos). Podemos fazer muito melhor do que isso. A trama acima foi criada pelo seguinte código Matlab: omega 0: pi400: pi H4 (14) (1-exp (-maome4)). (1-exp (-iomega)) H8 (18) (1-exp (- Iomega8)). (1-exp (-iomega)) H16 (116) (1-exp (-maome16)). (1-exp (-maomega)) trama (omega, abs (H4) abs (H8) abs ( H16)) eixo (0, pi, 0, 1) Copyright copy 2000- - Universidade da Califórnia, Berkeley

No comments:

Post a Comment